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ABSTRACT

At the breeding grounds of most baleen whales the patchiness and gaps in spa-
tial distribution results from interactions between behavior patterns and environ-
mental conditions. We evaluated the influence of environmental factors
(bathymetry and distance from shore with quadratic terms, and wind speed),
effort, and spatial autocorrelation effects to predict humpback whale group density
in the Southwest Atlantic Ocean. Count data of groups by grid cells were fitted
with conditional autoregressive models (CAR). Bayesian inference was performed
via integrated nested Laplace approximation. The best-fit model contained dis-
tance from shore and its quadratic term, bathymetry, and the autoregressive com-
ponent. Occupancy probability was high for the Abrolhos Bank, some cells from
the northeast continental shelf and southeast margin, but gaps in occurrence were
identified. High densities were estimated in the east continental margin, with the
highest density in the Abrolhos Bank, in some cells of the northeast continental
margin and in the southernmost area. We report that intermediate distances from
the coast, and shallow waters were preferred for breeding and calving activities.
We suggest that CAR models may incorporate aggregation mechanisms into habi-
tat modeling and may provide advances in marine mammal analyses by accounting
for residual autocorrelation.

Key words: Megaptera novaeangliae, distribution, habitat modeling, Atlantic
Ocean, continental margin, breeding ground, spatial analysis, autocorrelation,
INLA, Bayesian inference.

Information about the spatial structure of a population is an important compo-
nent to guide conservation and management procedures (Stamps 2009). Spatially,
some conditions may be recognized as optimal since the performance of individuals
might be higher in some locations compared with others (Begon ¢ 2/. 2006). The
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measure of habitat importance assumes that selection of areas is linked to breeding
and survival parameters that characterize fitness (Garshelis 2000, Bled er /. 2011).
Therefore, habitats of high quality refer to sites where individuals may expect a
higher probability of fitness (Bled ez /. 2011).

Most cetacean species respond to variability in marine ecosystems through
changes in distribution patterns (Forney 2000) rather than changes in survival and
reproductive patterns (Redfern ez #/. 2006). This response is conditioned by their
high mobility (Acevedo-Gutiérrez 2009) and dependence on a large amount of prey,
which likely responds to bottom-up effects (Estes ez a/. 2006). Because of this, the
main factors guiding cetacean distribution are food availability, predation risk, and
calf thermoregulation (Corkeron and Connor 1999, Acevedo-Gutiérrez 2009). There
are extensive studies that deal with prey availability directly or indirectly, that is,
biotic or abiotic features influencing this availability (e.g., Doniol-Valcroze et a/.
2007, Canadas and Hammond 2008, Gregr and Trites 2008, Pendleton ez /. 2009,
Bailey and Thompson 2010, Becker e «/. 2012, Dalla Rosa e «/. 2012). For exam-
ple, narwhals (Monodon monoceros) of Baffin Bay, West Greenland, select optimal for-
aging areas in dense pack ice to feed on Greenland halibut, Reinbardtius
hippoglossoides, regardless of open water availability (Laidre ez 2/. 2011).

For baleen whales, which partition feeding and breeding activities through sea-
sonal migration, the spatial distribution in high and low latitudes is driven by dif-
ferent factors (Clapham 2001). While in high latitude feeding grounds, the effects
of fronts, sea surface temperature, primary productivity, and bathymetry may pre-
dict aggregation of individuals because of high density of prey (Redfern ez /. 20006),
the distribution in low latitude breeding grounds may be driven by energy conser-
vation and avoidance of potential predators in high risk areas (Corkeron and Connor
1999, Ford and Reeves 2008, Clapham 2001, Steiger ez /. 2008). For example, the
highest densities of southern right whales, Eubalaena australis, occur in areas pro-
tected against waves and wind (Elwen and Best 2004, Seyboth ez /. 2015), where
mother-calf pairs occupy shallow waters near to shore more often than do other
groups (Elwen and Best 2004). For North Atlantic right whales a thermal limit in
the population distribution seems to exist (Keller ¢z /. 2006).

In addition to environmental adequacy, distribution may also be dependent on a
series of biological processes playing out on different levels. Population life history,
including reproduction, territoriality, and dispersion can cause aggregation and
gaps in the spatial distribution (Latimer ez #/. 2006). Baleen whales have a social
structure of small, unstable groups wherein the dynamics vary among species and
associated breeding strategies (Clapham 2000). Hence, habitat preference results
from complex interactions among behavior patterns, biological requirements, and
environmental conditions (Ersts and Rosenbaum 2003).

Like most baleen whales, the humpback whale, Megaptera novaeangliae, is a migra-
tory species moving seasonally between summer feeding grounds in high latitudes
and winter breeding and calving grounds in low latitudes (Dawbin 1956, 1966;
Mackintosh 1965, Clapham 2000). The International Whaling Commission (IWC)
recognizes seven humpback whale breeding grounds in the Southern Hemisphere
(IWC 1998). The population of interest in this study is the Southwest Atlantic
humpback whale population (SWA, breeding stock A), which feeds east of the Sco-
tia Sea, around South Georgia and South Sandwich Islands, and breeds along the
coast of Brazil (Stevick ez a/. 2006, Zerbini et /. 2006, Engel ez al. 2008, Engel and
Martin 2009).
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Humpback whale breeding areas are usually associated with reef complexes, islands,
and coastal areas (Dawbin 1956, Whitehead and Moore 1982). The pattern for SWA
humpback whale population is similar, with high population occurrence on the Abrol-
hos Bank (Andriolo e 2/. 2006, 2010). It has been hypothesized that the suitability of
Abrolhos Bank is related to its low-current issuing from its reefs, and the protection
against wind from its islands (Martins ez 2/. 2001, Morete et 2/. 2007).

Here, we consider the influence of environmental variables on habitat use
together with spatial correlation patterns to predict the density of humpback whales
in the Southwest Atlantic Ocean. Specifically, we predicted group density by con-
sidering taking into account the effects of bathymetry, wind speed, distance from
shore, and autocorrelation between spatial units, assuming that these features might
reflect a specific humpback breeding and calving strategy. We expected to find a
positive effect on group density of distance from shore and spatial autocorrelation,
and a negative influence of bathymetry and wind speed.

METHODS
Study Area

The study area comprised the southwestern Atlantic continental margin (conti-
nental shelf and slope) from the state of Sergipe (10°08'S) to the state of Rio de
Janeiro (23°12'S), Brazil, covering the 500 m isobath and reaching the 1,000 m iso-
bath in some areas (Fig. 1).

The northeast and east continental shelves are characterized by a complex sub-
strate derived from volcanic and tectonic activities. Between 10°08'S and 15°45'S
the shelf gradually narrows with a mean width of 50 km (Zembruscki ez /. 1979,
Lessa and Cirano 2006). A shelf expansion, originated from volcanos and biogenic
growth, occurs at the Royal Charlotte and Abrolhos banks, reaching 110 and
200 km of width respectively (Zembruscki ez 2/. 1979, Fainstein and Summerhayes
1982). The Abrolhos Bank is considered the largest and richest coral reef area of the
South Atlantic Ocean (Leao 1999, Castro and Pires 2001).

The continental slope related to the northeast and east shelves has a mean width
of 30 km and a mean depth of 2,000 m. From 20°19'S on the shelf narrows again
until 22°00’S, which is considered the southern limit of the east shelf (Zembruscki
et al. 1979). In this area the slope is wider and less abrupt than the northern coun-
terpart. From this limit the shoreline orientation changes direction from northeast-
southwest to east-west, and the shelf is known as the southeast continental shelf. It
has a mean width of 80 km and smooth topography with shelf break depth varying
between 120 and 180 m (Castro and Miranda 1998).

Survey

The sighting survey took place off the Brazilian coast between 26 August and 13
September 2011 during the peak of abundance of the humpback whale breeding
season (Martins e @/. 2001, Morete ez /. 2003). The sampling design was planned
according to distance sampling protocol (Buckland ez #/. 2001) to estimate popula-
tion size of the SWA humpback whale population (Pavanato ez #/. 2017). Distance
data were not used here, however (see Group Density Prediction below for details).

A high-wing aircraft (Aerocommander) equipped with bubble windows was used
to survey the northeast, east, and southeast continental shelves and the correspond-
ing continental slopes. Whenever possible, parallel transects were designed. In order
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Figure 1. Map showing the study area. The isobaths of 200 m and 1,000 m are shown
(black lines) and the limits of the continental margins are indicated (thin black lines).

to maximize sampling effort in the narrow northeast margin, transects were
designed in a zigzag shape. The aircraft flew during favorable weather conditions at
a height of 500 ft (152.40 m) and airspeed of 110 knots (204 km/h).

The survey was conducted with four researchers on board. Two observers were
located at the right and left bubble windows of the aircraft with one data recorder
and one resting person both seated in the rear row. To avoid fatigue effect, positions
were rotated according to a fixed protocol before starting a new transect. For each
sighting, the declination angle from the aircraft to the whale or group of whales was
measured by a hand-held clinometer when passed abeam. Geographic position and
group size were also registered. Group was defined as two or more individuals
swimming side by side within up to two body lengths of their nearest neighbor,
with coordinated speed and direction of movements (Clapham 2000).

Environmental Data Acquisition and Processing

We explored grids built at two spatial scales, a coarse resolution of 0.5°, and a
fine resolution of 0.1° of latitude and longitude, which correspond to 56 km and
11 km at the equator respectively. After implementing all analytical procedures
described below, we did not recognize substantial scale dependence on the predictor
variable; therefore, we opted to carry out inference and prediction using the grid
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cell of 0.1° of latitude and longitude because this resolution afforded a more detailed
inference (see details in Appendix S1, Fig. $5-S13).

Effort was calculated as the total transect lengths (km) within a given grid
cell. Bathymetric data were obtained from the global database ETOPO-1 with
1 arc-minute resolution (Amante and Eakins 2009). To match the data with
the scale of the grid cells, we averaged bathymetry to obtain a single value by
spatial resolution. Distances from shore (km) were calculated with the Haver-
sine approach as the great-circle distance between the midpoint of grid cells
for the different scales and shoreline coordinates (Hijmans 2017). Wind
speed data were obtained from daily surface observations derived from an
advanced scatterometer (ASCAT) aboard the Meteorological Operational Polar
(MetOp-A) satellite at a spatial resolution of 0.25° of latitude and longitude.
We used the nearest neighbor interpolation to regrid wind speed for the spa-
tial resolution of 0.1°, and the values were averaged for the spatial resolution
of 0.5°. Group sizes were averaged for the two spatial resolutions. Covariate
maps are provided in Figures S14-S16.

Group Density Prediction

Group density prediction for the SWA humpback whale population was based on
conditional autoregressive (CAR) models that allow the modeling of autocorrelated
spatial effects under the response variable (Besag 1974). Regarding humpback
whales, the choice of CAR models seems reasonable for at least two reasons: it
accounts for the influences of environmental variables and inserts a component
describing the spatial correlation between whale groups. Given by a generalization
of the standard conditional autoregressive models, the intrinsic CAR models
(ICAR) support certain types of nonstationarity in which the variance-covariance
matrix is not positive definite, but is semidefinite (Besag 1974, Held and Rue
2010). For these reasons, the ICAR models were chosen here.

Let s5; be the geographic location of a sighted group y. Summing up the number
¥(s,) of sighted groups within the grid cell 7, we defined

Y;= Zy(Jj),foriZI,...,G, ™

jei

where G is the number of grid cells.

Assuming these counts depend on the environment—mean bathymetry (), dis-
tance from shore (4), and wind speed (w) (all numeric variables), then a Poisson dis-
tribution results in

Y, ~ Pois(/;) )

z
log (;“i):ﬁ()+z B.zitp;itlog (), forz=1,...,Z, (3)

z=1

where /; is the expectation, Z is the total number of covariates in a model, and f is
the effort in km. The term log(f;) is an offset. Quadratic terms for 4 and & were also
included. Since the variance of counting data was higher than the mean, a negative
binomial error distribution was also tested.

The spatial dependence between groups can be achieved by adding a random
structure defined as
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where ;1 denotes the total number of neighboring cells of 7 and o;; = 1 if cells 7
and j share the same boundary, otherwise &;; = 0. The conditional variance o isa
hyperparameter. The component p; is conditional upon the effects of the neighbor-
hood through an autoregressive distribution. The neighborhood effect is defined as
the increasing density near high-density cells and decreasing density near low-
density cells or absences (Dormann 2009).

We used eight adjacent cells as neighbors (also known as Queen neighborhood).
For cells that share borders with cells containing the continental (west) shoreline the
number of neighbors was less than eight; for cells that share their boundary with
nonsampled cells we built the grid to also achieve eight neighbors, to avoid border
effects (Lim ez a/. 2007).

Therefore, in a first level only the cells referring to the observations were mod-
eled. In a second level, the spatial correlation was estimated even for those cells with
null effort. This structure of spatial dependence allows investigating the contribu-
tion of random effects even in cells that were not sampled, settling gaps and irregu-
lar sampling intensities (Gelfand ez /. 2000).

For mapping purposes, a density index (D,) was calculated, representing the frac-
tion of the total number of groups of the SWA humpback whale population per
cell. By defining the abundance of groups Ng=N/g, where N is the population size
(posterior mean) estimated elsewhere (Pavanato ez #/. 2017), and g is the mean group
size, D; was defined as

Ao
Ny, (6]

G &
a; E ;L,'
=1

where #; is the area in km”, and 4, is the expected number of groups from the
selected ICAR model for each cell 7.

Since we assumed a Poisson or a negative binomial distribution for Y}, we calcu-
lated the occupancy probability (i.e., the occurrence probability of at least one group
by cell) as

D;:

Pr[Y; > 0]=1—¢ D (©)

It is noteworthy to mention that for grid cells in which f; = 0 the density and
occurrence probability were predicted, and for this reason, those cells might have
higher associated variances.

Parameter Estimation and Model Selection

Unknown parameters of ICAR models were estimated through Bayesian inference
via integrated nested Laplace approximation (INLA, Rue ¢z /. 2009). Default vague
priors were established for the ICAR model through the leszg function in R-INLA
package (Rue ef /. 2009, Lindgren and Rue 2015) available in R software (R Core
Team 2015).
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The steps to select covariates with important effects over group density were the
following: (1) avoid collinearity effects by calculating the Spearman correlation coeffi-
cients () among all pairs of covariates and do not use jointly within a single model
whenever » > 0.6; (2) given this constraint, adjust models from the null to the global,
(3) use the Watanabe-Akaike information criterion (WAIC, Watanabe 2010) for
model selection, where the smallest WAIC indicates a better model whenever the dif-
ference to the nearest alternative model exceeds one; (4) whenever the WAIC from one
model to the subsequent one decreased or AWAIC <1, do not maintain the new
covariate; (5) further evaluate quality of model fit with the conditional predictive ordi-
nates (CPO) and the probability integral transforms (PIT, Martino and Rue 2010).

The WAIC is given by:

G
WAIC= _22 log pposcyi T 2pwaic @)
=1

where pos; = Epos(i]0) is the posterior predictive density for each data point y;
over the entire posterior parameter space 0, and py.ic is the effective number of
parameters defined as the summation over all data points of the posterior variance
for the log predictive density for y,. That is,

G
pwac= Z log p(»]0) (8)
i=1

Differently from Akaike information criteria (AIC) and the deviance information
criteria (DIC), which are conditioned on some point estimate (maximum likelihood
estimate for AIC and posterior mean for DIC), WAIC averages over the posterior
distribution.

The use of CPO is suited to measuring predictive power and for detecting outliers
in a data set. Formally, CPO = p(y;|y;—;), for I =1,...,G, is the predictive cross-
validated (or “leave-one-out”) predictive density at y;, where the posterior distribu-
tion was based on y;—;;, defined as the vector of all observations except 7. If y; is an
outlier, CPO; will be small meaning that the measure of probability of distance
between data and model is large. Visual examination of individual CPO; helps to
identify potential problems in the model specification. To use the CPOs jointly as a
means to evaluate predictive power of a model, the averaged —log CPO(LCPO) is
indicated (Held and Rue 2010, Roos and Held 2011).

G
LCPOz—(w)E log (CPO;) )
i=1

Likewise for WAIC, a smaller value of LCPO indicates a better model.

The PIT histogram is useful to compare and validate candidate models, wherein
in well-calibrated models PIT values should have a uniform distribution (Martino
and Rue 2010, Blangiardo and Cameletti 2015).

PIT; =Pr )} < yily-1] (10)

In the case of count data, the predictive distribution is discrete and the PIT his-
togram is not uniform under the hypothesis of an ideal forecast (Czado e «/. 2009).
Therefore, an adjusted nonrandomized version of PIT can be computed (Czado ez a/.
2009):
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PIT,Y =PIT; +0.5Pr [y" < y,|y—y] an

The adjusted PIT values can be interpreted in the same way as in applications
with continuous outcome data.

The importance of the spatial autocorrelation component was evaluated by com-
paring the best-fit ICAR model with a similar generalized linear model (GLM)
through WAIC. To compare the covariate (fixed) and spatial (random) effects, we
mapped the mean p, and the mean linear predictors from the best-fit model. Finally,
we calculated the mean and standard deviation of the fixed and random effects by
continental margin to infer the main force driving aggregation of humpback whale
groups in each one.

RESULTS

We obtained 488 cells within the grid of 0.1° of latitude and longitude for the
study area. We augmented the number of cells to achieve eight neighbors and,
therefore, we worked over 1,148 cells. The number of groups and effort are repre-
sented in Figure 2.

The global model included all covariates since » < 0.6 for all covariate pairs.
Based on the WAIC and LCPO, Poisson models provided a better fit to the data
than negative binomial models (Table 1).

According to the WAIC and LCPO, model E was the best (4 + 4+ b) (Table 1).
Analyzing the PIT histograms from the Poisson (Fig. S1), all models seem to be rea-
sonably well calibrated as no extreme values were computed.

According to model E, distance from shore () had a quadratic effect on group
density, indicating expected maximum density at a distance from shore of 171 km
(Fig. 3). Bathymetry (/) had a negative effect on group density (Fig. 3). It is impor-
tant to note that the maximum density in logarithmic scale for distance from shore
has a large uncertainty. Therefore, distances from shore from 140 to 236 km are
within the possible range of maximum density.

The W AIC of the ordinary GLM that is analogous to model E but without incor-
porating the spatial structure was 1,237.84, showing a considerable predictive decay
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Figure 2. Number of groups and effort (km) by grid cell.
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Table 1. Summary of candidate models including number of parameters (Pyaic),
Watanabe-Akaike information criterion (WAIC) and logarithmic conditional predictive
ordinates (LCPO).

Model® Pwalc WAIC LCPO

Poisson
A: null 82.70 883.63 458.13
B: 4 82.38 880.77 457.20
Cd+d 76.45 877.29 451.79
Did+d*+w 75.83 877.08 450.79
Ed+d+b 73.63 868.16 445.93
Fd+d>+b+ b 73.24 868.20 445.77

Negative binomial
G: null 62.41 919.47 478.99
H: d 62.53 916.59 483.66
L d+d* 53.12 910.26 463 .45
Jid+d+w 51.99 909.80 460.87
Kid+d*+b 51.14 899.69 457.44
Lid+d+b+ 5 51.11 899.26 587.70

°d = distance from shore, w = wind speed, 4 = bathymetry.
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Figure 3. Covariate effects on group density in logarithmic scale. Continuous black
lines indicate the posterior means, black dashed lines indicate the 95% probability inter-
vals; gray dashed line indicates the optimum (i.e., the highest density) for the covariate
with quadratic term (upper panel).

compared to the ICAR model (AWAIC = 355.53). The variance explained by the
spatial structure in the ICAR model was of 22%.

The density predicted (posterior mean) by model E is shown in Figure 4 along
with the count data. There is good agreement between the predicted and observed
number of groups in those grid cells where comparison was possible. Large variations
between grid cells indicate aggregations in some areas, most marked between grid
cells 400 and 900 (Fig. S2). These correspond to the east continental margin (Fig. 1).
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Observed number of groups

Predicted number of groups

Figure 4. Observed and predicted (posterior mean) number of groups by grid cell.

The map of predicted group density per km? displays the highest aggregations at
the Abrolhos Bank, in some cells of the east and northeast continental margin, and
in the southernmost covered area in the state of Rio de Janeiro (Fig. 5). In general,
the smallest densities were estimated for cells located too close or too far from the
shoreline. Minimum and maximum predicted densities were 0 and 0.5 per km?. To
provide the plausibility of the candidate models, density prediction analogous to
Figure 5 are available for models A (null) and F (global), which would be the two
extreme outcomes (Fig. S3, $4).

The occupancy probability of groups per grid cell was heterogeneous, ranging
from O to 1, with a mean of 0.7 (Fig. 6). A remarkable gap in the occurrence (i.e.,
cells in which the probability of occurrence were low) was identified for the area
located between the south of Abrolhos Bank and northern limit of the southeast
continental margin, between 20°S and 22°S. Regarding longitude, cells located
extremely far from the shoreline (>200 km) and/or at deep waters (>1,500 m) also
had the smallest probability of occurrences.

The estimates of the covariate and spatial autocorrelation effects are shown in
Figure 7, while the relationship between them is shown in Figure 8. The covariate
effect was high for the majority of cells, with the highest prediction in the Abrolhos
Bank and in the southernmost area far from the shoreline; a small covariate effect
was predicted for cells far from the coast in the latitude of the Abrolhos Bank and
for some cells between the south of Abrolhos Bank and northern limit of the south-
east continental margin. The spatial effect was high in the northeast continental
margin, except for the northernmost cells, and in the Abrolhos Bank. The smallest
spatial autocorrelation effect was predicted at the south of the Abrolhos Bank and in
the Royal Charlotte Bank. A positive relation between both effects seems to occur
(Fig. 8).

A comparison between the covariate and spatial autocorrelation effects by conti-
nental margin (Table 2) suggests that the autocorrelation was mostly important in
the northeast, and east margins than in the southeast. By comparison, the covariate
effect was smaller in the northeast and southeast margins than in the east
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Figure 5. Density of groups (posterior mean) by km® obtained from model E
d+d* +b).

continental margin. Marginal posterior standard deviations, however, were relatively
large in all cases, indicating large uncertainties in the reported differences.

DiIscussioN
Modeling Approach and Inference

The predictive distribution of humpback whale group density and occupancy
probability off the Brazilian coast was based on models which combined compo-
nents with potential to reflect diverse types of data variability, including environ-
mental effects (distance from shore, wind speed, and bathymetry), spatial
autocorrelation, and heterogeneous sampling intensity. From an investigative point
of view, the inclusion of one or more of these components may be satisfactory.
Nevertheless, predictive inference may be misleading if group density or occupancy
processes need more explanation than that achieved by environmental covariates
(Guisan and Zimmermann 2000, Guisan et z/. 2006, Latimer et /. 2006).

Substantial residual autocorrelation can remain after a model is fitted to data due
to incomplete explanatory power of the linear predictors that are available. To han-
dle the residual autocorrelation, a suitable solution is obtained by the inclusion of a
set of spatially correlated random effects in the form of a Bayesian hierarchical
model (Lee 2013). The spatial correlation pattern implies that close cells have simi-
lar behavior compared to those located farther away. In other words, a high-density
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Figure 7. Posterior mean of the covariate effect (fixed) and spatial autocorrelation effect
(random) in logarithmic scale by grid cell obtained from model E (4 + d* + b).

cell may yield an increment in near cells, while a low-density cell may induce a
decrease in its neighborhood (Dormann 2009).

Conditional autoregressive models have already been used to make predictions in
epidemiology, presence/absence data of vegetation, terrestrial animals, and birds
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Figure 8. Relationship between the posterior distributions of the spatial autocorrela-
tion and covariate effect obtained from model E (4 + 4° + 4). The black line indicates a
linear model fitted between both effects.

Table 2. Summary of the spatial and covariate effects in the northeast, east, and southeast
continental margins.

Continental margin Mean(SE) SD(SE) Mean(CE) SD(CE)
Northeast 1.81 1.69 0.20 1.99
East 1.10 3.10 0.38 5.09
Southeast 0.41 2.06 0.21 2.94

Note: SE corresponds to spatial effect and CE to covariate effect.

(Lichstein et #/. 2002, Latimer et /. 2006, Carroll et /. 2010). Redfern et «/. (2006)
have suggested that CAR models constitute a potential technique for cetacean mod-
eling. Here, cetacean counting data were modeled using a Gaussian autoregressive
conditional structure subjected to the influence of eight (first order) neighbors to
account for the spatial effects in each grid cell. This structure may be further
adjusted to account for the influence of second- and higher-order neighbors through
a decay function, assigning smooth weights as the distances increase.

The INLA procedure has been largely used in spatial data analysis for providing
an interesting computational approach to obtain marginal posterior distributions,
being a much faster alternative to Markov chain Monte Carlo methods (MCMC,
Martino and Rue 2010, Beguin ¢t #/. 2012, Blangiardo ¢t @/. 2013, Bivand ¢t a/.
2015). In contrast to INLA, the MCMC algorithms, when applied to complex hier-
archical spatial models, usually have difficulties related to convergence and compu-
tational time, which may be a disadvantage to those ecologists who aspire to use
Bayesian inference in a spatial context (Beguin ez #/. 2012). Nevertheless, Bayesian
hierarchical models still lack robust methods for model comparison since AIC and
the Bayesian information criterion (BIC) are not recommended for complex hier-
archical structures because the true number of independent parameters is hard to
estimate in these models (Burnham and Anderson 2002). The DIC (Spiegelhalter
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et al. 2002) was developed to better suit this challenge, but lack of robustness seems
to remain (Royle and Dorazio 2008, Spiegelhalter ¢z z/. 2014). The WAIC and can
be viewed as improvements on the DIC (Vehtari e 2/. 2017), and for this reason
were chosen here. For a review of these criteria see Gelman et #/. (2014).

Habitat Selection and Density Pattern

The difference between the effects of spatial autocorrelation and covariates (dis-
tance from shore, and bathymetry) were related to the type of continental margins:
for the northeast margin the spatial autocorrelation effect was predominant; for the
southeast margin the covariate effect was predominant; and for the east continental
margin both effects were important (Table 2). It is worthy to point out that high
mean covariate and spatial autocorrelation effects were predicted for the east margin,
an area in which the highest density was estimated (Fig. 5). In contrast, in areas
where one effect was predominant (southeast and northeast margin) density tended
to be smaller, except for some high-density cells.

The best-fit model included distance from shore and its quadratic term, and
bathymetry. Likewise, associations between shallow waters at a given distance from
the shoreline and the occurrence of groups, mainly mother-calf pairs, were found for
other breeding grounds (Ersts and Rosenbaum 2003, Félix and Haase 2005, Ona
et al. 2016). Specifically for the Abrolhos Bank, a high proportion of mother-calf
pairs has been found in shallow waters near the Abrolhos Archipelago (Martins e a/.
2001; Morete ez 2/. 2003, 2007). From a broad scale, our results point towards high
group densities in shallow waters at a distance from the coast of 171 km (95% PI:
140-236 km), which encompass the Abrolhos Bank.

Nonindependence of data points near each other yield spatial autocorrelation,
which may be connected through ecological and nonecological processes (Dormann
2009). Nonmodeled covariates and a misleading functional relationship (e.g., con-
sider a linear effect when the “true” relationship between the response and explana-
tory variable is nonlinear) constitute features driving spatial autocorrelation
(Dormann et a/. 2007). For instance, water transparency might be a missing effect
that leads to an inflation of the spatial autocorrelation. In addition, because we did
not distinguish between density and detection processes, the effect of covariates may
be responding to both. It is unlikely that distance from shore and bathymetry had
an effect on detection probability; on the other hand, wind speed had the potential
to affect the detection process. From our best-fit model, wind speed was not
selected. Otherwise, caution should be taken to interpret wind speed effect.

Another possibility to explain the importance of the spatial autocorrelation is
that a synergistic effect has been at play because biological processes may generate
spatial patterns, leading to a spatial structuring of the population (Latimer et a/.
2006, Dormann et «/. 2007). Since territorial defense of feeding sources is absent
and predation is probably negligible, the population spatial structure may be
viewed as an outcome of the adopted breeding strategy which, for humpback
whales, is controlled by a polygynous system in which males search for a relatively
dominant position over females (Winn and Reichley 1985). Singer males may
remain alone, probably to attract females for copulation and to maintain distance
from other males, or may actively look out for and, eventually, escort a mature
female, aggregating in pairs or triplets when a female is accompanied by a calf
(Winn and Reichley 1985). Furthermore, males may constitute coalitions to com-
pete for the main escort position (Winn and Reichley 1985), when they might
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show aggressive behavior (Tyack and Whitehead 1983). Males that may not com-
pete successfully might adopt a dispersal strategy (Rosenbaum ez /. 2009) to low-
density areas with fewer partners, but also with less competition (Clapham 2001).
Thereby, an aggregated structure at the breeding ground would favor the selection
for both sexes and may be one of the mechanisms driving the spatial autocorrelation
for groups off the Brazilian coast.

Moreover, the spatial autocorrelation effect may evidence another important
aspect driving humpback whale habitat selection. Based on the temporal structure
of the population, lactating females are the first to migrate to the breeding grounds,
followed by mature and immature individuals and, finally, by pregnant females
(Dawbin 1966). Mother and calf pairs are thought to gather in the best habitat
conditions for calving and nursing. Since females could be in estrus at this time
(Chittleborough 1965), they may attract males, and this suggests individuals are
spatially distributed according to their role within the population. The aggregation
of groups often happens to be around the habitat that is selected by females to maxi-
mize the success of calf growth.

For the SWA humpback whale population, the highest concentration of groups
has been identified on the Abrolhos Bank (Andriolo et #/. 2006, 2010). Here, the
predicted density corroborates the previous studies; it also suggests that areas
relatively far from the bank (e.g., cells from northeast and southeast margins) com-
prised moderate densities (~0.1 groups per cell) and occurrence was almost certain
(Figs. 5 and 6). Therefore, we recommend that future aerial or vessel surveys expand
their sampling protocol to include the north and south limits of the present survey
to prospect for new areas of occurrence.

There is a consensus that the SWA humpback whale population has been consis-
tently increasing and expanding after whaling was prohibited (Siciliano 1995, Zer-
bini et a/. 2004, Andriolo et /. 2010, Wedekin et «/. 2010, Ward et «/. 2011,
Zerbini et al. 2011, Bortolotto et «/. 2016, Pavanato et «/. 2017). Nevertheless, the
scenario of population growth and associated habitat expansion may increase nega-
tive conflicts with anthropogenic activities given the low representativeness of the
marine protected areas along the Brazilian breeding ground (Wedekin ez 2/. 2010,
Martins er a/. 2013, Castro et a/. 2014). The anthropogenic threats for the SWA
humpback whale population include collisions with vessels, whale watching dis-
turbance, entanglement in fishing gear, cetacean stranding associated with seismic
surveys, and chemical pollution (Morete ¢z 2/. 2007, Engel ¢z 2/. 2004, Martins ez al.
2013, Bezamat ez /. 2015).

From a precautionary standpoint and in the face of these possible negative inter-
actions, we recommend that future spatial distribution models also include proxies
of the presence and intensity of human activities as explanatory covariates to quan-
tify their potential effects on the occurrence or density of humpback whales off the
Brazilian coast. In addition, extending the analyses to include multiple years using
spatio-temporal models would provide important information on how the popula-
tion has been expanding. Besides being important for preventing conflicts with
human activities, spatial models may guide efficient management and conservation
actions, and, eventually, define representative marine protected areas.
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SUPPORTING INFORMATION

The following supporting information is available for this article online at
http://onlinelibrary.wiley.com/doi/10.1111/mms.12492/suppinfo.

Appendix S1. Comparison between both spatial resolutions.

Figure S1. PIT histograms for candidate models A (null) to H (global).

Figure S2. Observed (red line) and predicted (posterior mean: thin black
line; 95% probability interval: thin blue line) number of groups by grid cell.

Figure §3. Density of groups (posterior mean) by km”~ obtained from model
A (null).

Figure $4. Density of groups (posterior mean) by km” obtained from model
F (global).

Figure S5. Number of groups and effort (km) by grid cell for the 0.5° spa-
tial resolution.

Figure S6. PIT histograms for candidate models A (null) to H (global) for
the 0.5° spatial resolution.

Figure S7. Covariate effects on group density in logarithmic scale for the
0.5° spatial resolution. Continuous black lines indicate the posterior means; thin
black lines indicate the 95% probability intervals.

Figure S8. Observed and predicted (posterior mean) number of groups by
grid cell for the 0.5° spatial resolution.

Figure §9. Observed (red line) and predicted (posterior mean: thin black
line; 95% probability interval: thin blue line) number of groups by grid cell for
the 0.5° spatial resolution.

Figure $10. Density of groups (posterior mean) by km” obtained from model
E (d + b) for the 0.5° spatial resolution.

Figure S11. Probability of occurrence (posterior mean) by grid cell obtained
from model E (4 + &) for the 0.5° spatial resolution.

Figure S12. Posterior mean of the covariate effect (fixed) and spatial autocor-
relation effect (random) in logarithmic scale by grid cell obtained from model E
(d + b) for the 0.5° spatial resolution.

Figure S13. Relationship between the posterior distributions of the spatial
autocorrelation and covariate effect obtained from model E (4 + 4) for the 0.5°
spatial resolution. The black line indicates a linear model fitted between both
effects.

Figure S14. Distance from shore (km) by grid cell.

Figure S15. Wind speed (m/s) by grid cell.

Figure S16. Bathymetry (m) by grid cell.

Table S1. Summary of candidate models including: number of parameters
(pwarc), Watanabe-Akaike Information Criterion (WAIC) and logarithmic Con-
ditional Predictive Ordinates (LCPO).

Table §2. Summary of the spatial and covariate effects in the northeast, east,
and southeast continental margins.
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